PyTorch 使用指定的 GPU 的方法

搬瓦工

好久没写 PyTorch 了,记录一下在 PyTorch 中如何让程序使用指定的 GPU,这样能有效的避免多人共用一台服务器的时候互相抢占 GPU 资源。如果不指定,PyTorch 默认会占用所有 GPU,这样是非常不友好的,建议大家都在写代码的时候指定一下 GPU。

一、PyTorch 指定 GPU 的方法

下面的内容转载自 cnblogs,原文链接在下方给出,觉得写得很完善了。

PyTorch 默认使用从 0 开始的 GPU,如果 GPU 0 正在运行程序,需要指定其他 GPU。

有如下两种方法来指定需要使用的 GPU。

1. 类似 TensorFlow 指定 GPU 的方式,使用 CUDA_VISIBLE_DEVICES

1.1 直接终端中设定:

CUDA_VISIBLE_DEVICES=1 python my_script.py

1.2 Python 代码中设定:

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

见网址:http://www.cnblogs.com/darkknightzh/p/6591923.html

2. 使用函数 set_device

import torch
torch.cuda.set_device(id)

该函数见 pytorch-master\torch\cuda\__init__.py

不过官方建议使用 CUDA_VISIBLE_DEVICES,不建议使用 set_device 函数。

二、参考文献和结语

原文链接:https://www.cnblogs.com/darkknightzh/p/6836568.html

PyTorch 还是非常好用的,老唐本人一直用的都是 PyTorch,推荐大家使用。PyTorch 官网:https://pytorch.org

赞(2)
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:《PyTorch 使用指定的 GPU 的方法
文章链接:https://oldtang.com/671.html
本站资源仅供个人学习交流,请于下载后24小时内删除,不允许用于商业用途,否则法律问题自行承担。